

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanananam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Machine Learning (23CS0523)

Regulation: R23

Course & Branch: B.Tech – CSE

Year & Sem: III Year & II Sem

UNIT – I

INTRODUCTION TO MACHINE LEARNING

1. a) Define Machine Learning What are the advantages of Machine Learning. [CO1][L1] 5M
b) How do you select Machine Learning model. [CO1][L3] 5M
2. Classify various types of Machine Learning & explain any ML model with an example. [CO1][L2] 10M
3. Explain the applications of Machine Learning. [CO1][L2] 10M
4. a) Explain concepts of learning by Rote & Induction with an example. [CO1][L2] 5M
b) Briefly discuss various Dataset's in Machine Learning [CO1][L2] 5M
5. a) Briefly explain the concepts of Reinforcement Algorithm [CO1][L2] 5M
b) Discuss about various types of Data [CO1][L1] 5M
6. Explain different stages in Machine Learning [CO1][L2] 10M
7. a) Briefly describe the procedure to handle duplicate records [CO1][L3] 5M
b) Explain about feature engineering in Machine Learning [CO1][L3] 5M
8. What is the role of searching and learning in Machine Learning Explain Grid search & Random search with an example [CO1][L4] 10M
9. Explain different Data collection Methods [CO1][L2] 10M
10. a) What is the need of label encoding [CO1][L1] 2M
b) What is meant by supervised and Unsupervised learning in ML [CO1][L1] 2M
c) Define machine learning. [CO1][L1] 2M
d) What is meant by Label Dataset in ML [CO1][L1] 2M
e) What is meant by regression problem [CO1][L1] 2M

UNIT – II

NEAREST NEIGHBOR-BASED MODELS

1. a) Explain the steps involved in Nearest Neighbour Models. [CO2][L2] 5M
- b) List out the applications of Manhattan Distance in ML. [CO2][L1] 5M
2. Explain Euclidian Distance measure with one example. [CO2][L2] 10M
3. Explain Manhattan Distance measure with example. [CO2][L2] 10M
4. a) Explain the concept of Murkowski distance. [CO2][L2] 5M
- b) Explain hamming distance for any two binary and DNA patterns. [CO2][L2] 5M
5. Explain Non Metric Proximity measures with one example. [CO2][L2] 10M
6. Explain the steps involved in K-Nearest Neighbors algorithm [CO2][L2] 10M
7. Classify a new customer as "high-spending" or "low-spending" based on their age and income by using KNN algorithm. [CO2][L3] 10M

Customer	Age	Income (Rupees)	Spending Class
A	25	30,000	Low
B	45	80,000	High
C	35	50,000	Low
D	50	90,000	High
E (New)	40	60,000	

8. A bank wants to classify customers as "Low-Risk" or "High-Risk" for loans. [CO2][L3] 10M
Classify Customer E using Manhattan Distance and Radius Distance Nearest Neighbour Algorithm. Assume suitable radius.

Customer	Age	Income (\$)	Credit Score	Loan Amount (Rupees)	Risk Level
A	25	30,000	700	10,000	Low
B	45	80,000	600	40,000	High
C	35	50,000	750	20,000	Low
D	55	90,000	580	50,000	High
E (New)	40	60,000	680	25,000	

9. Explain KNN Regression with one example. Also list out advantages [CO2][L2] 10M
10. a) List out the performance measures of Regression. [CO2][L1] 2M
b) List out the performance measures of Classification. [CO2][L1] 2M
c) Define MAE and R^2 . [CO2][L1] 2M
d) How does KNN regression differ from KNN classification [CO2][L2] 2M
e) List out common distance measures used in machine learning. [CO2][L1] 2M

UNIT – III

MODELS BASED ON DECISION TREES & THE BAYES CLASSIFIER

1. Explain the key steps involved in building a Decision Tree for classification. [CO4][L2] 10M
2. Discuss how impurity is measured in decision trees using Gini Index and Entropy with examples. [CO3][L4] 10M
3. Describe the steps involved in Decision Tree is built for regression with one example. [CO3][L3] 10M
4. Describe the steps involved in training a Random Forest for classification. [CO4][L2] 10M
5. Apply Random Forest Regression to a sample dataset and explain how it predicts continuous target values. Mention any evaluation metrics used. [CO3][L3] 10M
6. Explain the key concepts of Bayes' Rule and how it is used in classification. Provide an example. [CO4][L2] 10M
7. Describe the steps involved in building a Bayes Classifier for binary classification using Bayes' Rule. [CO4][L3] 10M
8. What is the Naive Bayes Classifier Explain the assumption of class conditional independence and how it simplifies computation. [CO4][L2] 10M
9. Apply the Naive Bayes Classifier to a real-world multi-class problem such as spam detection. Outline the model building, prediction, and evaluation steps. [CO4][L3] 10M
10. a) What is the main criterion used to split nodes in a decision tree during classification [CO4][L1] 2M
 - b) State one key difference between decision trees used for classification and for regression. [CO3][L2] 2M
 - c) What is the role of the bias–variance trade-off in decision trees [CO3][L4] 2M
 - d) In the context of Bayes' Rule, what is meant by the 'prior probability' [CO3][L1] 2M
 - e) What assumption does the Naive Bayes Classifier make about features [CO4][L1] 2M

UNIT – IV

LINEAR DISCRIMINANTS FOR MACHINE LEARNING

1. Explain the steps involved in training a Perceptron classifier with a simple [CO5][L3] 10M example.
2. What is Linear Discriminant Analysis (LDA) Explain LDA steps for [CO5][L2] 10M classification.
3. Explain the Perceptron Learning Algorithm with steps. How does the [CO5][L3] 10M algorithm converge for linearly separable data
4. Describe the working of Support Vector Machines (SVMs) for linearly [CO5][L2] 10M separable data. Explain margin, hyper plane, and support vectors.
5. What happens when data is not linearly separable in SVM Explain how soft [CO5][L4] 10M margin and Kernel Trick help.
6. Explain the concept of the Kernel Trick in SVM with an example. Why is it [CO5][L3] 10M useful for non-linear classification
7. Compare and contrast Logistic Regression and Linear Regression. Give one [CO5][L4] 10M example each.
8. What is a Multi-Layer Perceptron (MLP) Describe its architecture and how it [CO5][L2] 10M extends the single-layer perceptron.
9. Explain the Backpropagation algorithm for training an MLP. Include forward [CO5][L3] 10M pass, error calculation, and weight update steps.
10. a) What is the main objective of the Perceptron Learning Algorithm [CO5][L1] 2M
 b) Define the term „Support Vector“ in Support Vector Machines (SVM). [CO5][L1] 2M
 c) What is the role of the activation function in a Multi-Layer Perceptron [CO5][L2] 2M
 d) Mention one key difference between Linear Regression and Logistic [CO5][L1] 2M Regression.
 e) What does the Kernel Trick do in the context of SVM [CO5][L2] 2M

UNIT - V
CLUSTERING

1. What is clustering Explain the types of clustering methods with simple examples. [CO6][L2] 10M
2. Describe the K-Means clustering algorithm. What are the steps involved in the algorithm Provide an example. [CO6][L3] 10M
3. What is Fuzzy C-Means clustering How does it differ from K-Means clustering [CO6][L3] 10M
4. Explain Agglomerative and Divisive hierarchical clustering methods. How are they different [CO6][L3] 10M
5. What is Soft Clustering How is it used in clustering methods like Fuzzy C-Means [CO6][L4] 10M
6. What is Matrix Factorization in clustering How does it help in clustering large datasets [CO6][L3] 10M
7. Explain Rough Clustering and the Rough K-Means algorithm. How is it different from traditional K-Means [CO6][L4] 10M
8. What is the Expectation Maximization (EM) algorithm How does it work for clustering data [CO6][L3] 10M
9. Explain Spectral Clustering. How does it work, and when is it useful for clustering [CO6][L4] 10M
10. a) What is the difference between Agglomerative and Divisive clustering methods [CO6][L1] 2M
b) What is a centroid in K-Means clustering [CO6][L1] 2M
c) What is Soft Clustering Give an example. [CO6][L2] 2M
d) How does Fuzzy C-Means differ from K-Means [CO6][L2] 2M
e) What is Matrix Factorization in clustering Why is it useful [CO6][L2] 2M